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Abstract

In this paper, we introduce SableCC, an object-oriented framework that generates com-
pilers (and interpreters) in the Java programming language. This framework is based on
two fundamental design decisions. Firstly, the framework uses object-oriented techniques
to automatically build a strictly-typed abstract syntax tree that matches the grammar of
the compiled language which simplifies debugging. Secondly, the framework generates tree-
walker classes using an extended version of the wvisitor design pattern which enables the
implementation of actions on the nodes of the abstract syntaz tree using inheritance. These
two design decisions lead to a tool that supports a shorter development cycle for constructing
compilers.

To demonstrate the simplicity of the framework, we present all the steps of building an
interpreter for a mini-BASIC language. This exzample could be easily modified to provide
an embedded scripting language in an application. We also provide a brief description of
larger systems that have been implemented using the SableCC tool.

We conclude that the use of object-oriented techniques significantly reduces the length of
the programmer written code, can shorten the development time and finally, makes the code
easier to read and maintain.

1: Introduction

The number of computer languages in use today is overwhelming. Ranging from general
purpose to highly specialized, they are present in almost all areas of computing. There
are mainstream programming languages like C, Fortran, Pascal, but also many other lan-
guages used in domain-specific applications. Computer languages can be used to describe
many things, other than computer processing. HTML[12] or TeX[8] are used to describe
formatted documents. A domain-specific language like HL7[1] is used to exchange health
care information uniformly across the world. It would impossible to list all the uses here,
but it is worth noting that these languages are often embedded in larger systems. For ex-
ample, many word processing applications have their own tiny macro language to allow the
automation of commands. In component-based development environments, small scripting
languages are used to glue together components.

In the 1950’s, writing a compiler was very difficult. It took 18 staff-years to implement
the first FORTRAN compiler[2]. Since then, advances in the theory of compilers and the
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development of many compiler tools have simplified this task greatly. Writing a compiler
is now a feasible task for any programmer with minimal knowledge of compiler techniques.
This simplicity is achieved due to the use of compiler compilers. A compiler compiler is
a program that translates a specification into a compiler for the programming language .
described in the specification. This relieves the programmer from the burden of writing the
lexical and syntactical analysis code.

Over the years, many compiler compilers have been developed. The scope of these tools
varies. While some will build a complete compiler (end-to-end) from a specification, others
will only build the front-end of a compiler (lexer and/or parser). It may seem, at first glance,
that an end-to-end compiler compiler will be more powerful. However, in practice, front-end
compiler compilers are normally integrated with a general purpose programming language.
This way, the implementation of complex data structures, optimizations, and code analyses
is easier because it is done in the programmer’s native programming language. Front-end
compiler compilers exist for almost all major programming languages in use today.

In the last few years, the Java”™ [4] programming language has gained a remarkable pop-
ularity on the Internet. Although superficially Java has a syntax similar to C++, Java also
has many additional features of modern high-level object-oriented programming languages.
For example, Java has a garbage collector, a cleaner inheritance mechanism with classes
and interfaces, and a rich standard cross-platform library with support for graphical user
interfaces and network programming. One of the most interesting properties of Java is the
portability of object code. Java source files are compiled to platform independent bytecode
instructions. At runtime, these bytecodes are interpreted by a Java Virtual Machine[10]
to perform the actual computation.

We have developed SableCC, to generate compilers written in the Java programming
language. SableCC sits in the middle between front-end and end-to-end compiler compilers.
It not only generates a lexer and a parser, but it also builds a complete set of classes.
Our main goal was to provide a framework that would simplify the development of easy
to maintain compilers. To achieve this goal, the framework abides by the two following
properties:

e All data structures are self-preserving. By preventing the programmer from corrupt-
ing data structures, the system helps reducing debugging time. This property is
achieved by strictly typing the abstract syntax tree.

e The addition of new functionality should be feasible through the addition of
programmer-defined classes. This implies a clear separation between automatically
generated classes and programmer written classes and thus, helps debugging. This
is achieved by providing ready-to-be-inherited-from tree-walker classes. These classes
implement the visitor design pattern to enable the use of inheritance as a means to
add actions. (We use the term actions to refer to the code written by a programmer
to be executed on specific nodes of the abstract syntax tree).

This paper is organized as follows. In section 2 we give a high level description of
SableCC. In section 3 we explain the relation between a grammar and a typed abstract
syntax tree. In section 4 we explore the visitor design pattern and explain the few extensions
that we have implemented in our framework. In section 5 we use SableCC to build an
interpreter for a mini-BASIC language. In section 6 we briefly describe other compilers
that were built using the SableCC tool. In section 7 we discuss related work, and in section
8 we present our conclusions.
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2: SableCC

SableCC represents the result of our research to develop a Java compiler compiler that
meets new compiler implementation trends. More specifically:

» Modern compilers usually implement many passes over the compiled program. One
pass compilers (like early PASCAL compilers) are seldom used anymore.

e Many compilers work on AST (Abstract Syntaz Tree) representation of programs.

e As a compiler evolves over time, new analyses and optimizations are added to the
compiler.

e A compiler, like any other software, must be maintainable.

To address these issues we have developed a new approach for compiler compiler tools.
In our approach, the compiler compiler place in the development cycle has been reduced
to merely build an initial object-oriented framework that is based solely on the lexical and
grammatical definition of the compiled language. This has the advantage of limiting frame-
work modifications to the case where the grammar of the compiled language is changed.

On the other hand, the richness of the generated environment has been increased. So,
in the generated framework:

e The parser automatically builds the AST of the compiled program.
e Each AST node is strictly typed, ensuring no corruption occurs in the tree.

e Each analysis is written in its own class. Writing a new analysis only requires ex-
tending a tree-walker class and providing methods to do the work at appropriate
nodes.

e Storage of analysis information is kept in the analysis class itself, outside the definition
of node types. This ensures no modification to a node type is needed when a new
analysis is added to or removed from the compiler.

The framework makes extensive use of object-oriented design patterns to achieve mod-
ularity of code. The resulting compiler becomes a very maintainable compiler. In some
cases we have opted for good object-oriented design over fast code. It is our belief that
over time, new processors get faster and memory gets cheaper, but the same old code base
is often used to generate new compilers. So good software engineering is important in the
long term.

We have developed SableCC in the Java programming language. It runs on any platform
supporting the Java Development Kit 1.1 or newer.

2.1: General steps to build a compiler using SableCC

Producing a compiler using SableCC requires the following steps (as shown in figure 1):

1. Creating a SableCC specification file containing the lexical definitions and the gram-
mar of the compiled language.

2. Launching SableCC on the specification file to generate a framework.

3. Creating one or more working classes, possibly inheriting from classes generated by
SableCC.
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Figure 1. Steps to create a compiler using SableCC

4. Creating a main compiler class that activates the lexer, parser and working classes.

5. Compiling the compiler with the Java compiler.

By working classes we mean classes that contain the core compiler functionality. These
classes can be analyses, transformations on the AST, or simply code generation classes.

We must note that SableCC, as other compiler compiler tools, can also be used to build
interpreters. In such a case, as we will see in section 5, a working class can be the interpreter
itself.

2.2: SableCC specification files

A SableCC specification file is a text file that contains the lexical definitions and the
grammar productions of the language to be recognized by the generated compiler frame-
work. It also specifies a destination root Java package for generated files.

Unlike other compiler compilers, there is no place to put action code associated with a
token or a production. This design has the advantage of adding stability to the framework.
Modifications to the framework are limited to when the grammar of the compiled language
is changed. Adding, changing or even removing action code {in working classes) does not
affect the generated framework in any way.

2.3: SableCC generated files

On output, SableCC generates files into four sub-packages of the specified root package.
The packages are named: lexer, parser, node and analysis. Each file contains either a
class or an interface definition.

e The lexer package contains the Lexer and LexerException classes. These classes
are respectively the generated lexer and the exception thrown in case of a lexing error.

e The parser package contains the Parser and ParserException classes. As expected,
these classes are the parser and the exception thrown in case of a parsing errors.

e The node package contains all the classes defining the typed AST.

o The analysis package contains one interface and three classes. These classes are
used mainly to define AST walkers.
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Figure 2. Traditional versus SableCC actions debugging cycle
2.4: Compiler development cycle

The choices we have made in the design of the SableCC compiler framework have a direct
incidence on the development cycle of a compiler.

As illustrated by the left diagram of figure 2, with traditional compiler compilers, the
cycle involves the following steps. First, the programmer writes or fixes the grammar and
action code in the specification file. Then the source code for the compiler is generated.
The source code is then compiled to an executable program. The program is then tested
and debugged. The problem in this cycle is that the source files of the debugged program
are generated. So, if a bug is found in this source code, the programmer has to find the
corresponding code in the specification file and fix it there.

As shown by the right diagram of figure 2, with SableCC, this cycle is shortened. Since
actions are directly written as Java classes, the source code of the debugged program is
the programmer written code itself. This enables interactive debugging in an Integrated
Development Environment.

3: The grammar and abstract syntax tree

The first phase of a compiler works as follows: The lexer module breaks the input into
small meaningful sequences of characters called tokens. Then, the parser module verifies
that the sequence of tokens returned by the lexer module conforms to a grammar. If not,
the parser issues an error and exits. (Some compilers try to bypass the error to catch
further errors, but this is beyond the scope of this paper).

A grammar is a set of rules that defines the syntax of a programming language. We will
informally define a grammar by looking at an example:

Tokens
l_par = ’(’; r_par = 7)’;
plus = ’+’; number = [’0’..°9’];

Productions /* grammar */
exp = number | add;
add = 1_par exp plus exp r_par;

This grammar specifies a small arithmetic language. In this example exp is a production
that has two alternatives (number and add), and add is a production that has a single
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alternative (1_par..r_par). An alternative has zero or more elements. For example, the
last alternative had five elements. Each element is either a production name or a token
name.

The second element (exp) of the single alternative of production add, stands for all
possible alternatives of production exp . Note that it cannot stand for anything else. This
behavior can be mimicked through inheritance in Java. SableCC could define an abstract
class PExp denoting production exp, and define two classes AExp1 extends PExp and AExp2
extends PExp, denoting respectively the first and second alternatives of production exp.
This would give us a type system that enforces a variable of type PExp to hold only values
of type AExp1l or AExp2. For our example grammar, SableCC would generate the following
classes defining an abstract syntaz tree (AST) for the grammar:

abstract class PAdd {F

class AAddl extends PAdd

{TLPar eleml; PExp elem2; TPlus elem3;
PExp elem4; TRPar elem5; }

abstract class PExp {}
class AExpl extends PExp {TNumber eleml;}
class AExp2 extends PExp {PAdd elemi;}

PExp and PAnd are abstract classes (meaning that no instance of these types can be created,
only instances of derived type), to prevent the construction of meaningless ASTs.

We have implemented this inheritance and naming scheme in an early version of SableCC.
But, after some usage and feedback, it was felt that looking for the fourth (or was is the
fifth?) element of the third alternative of production p made the code less readable and
made code maintenance more difficult. It is easy to inadvertently type PExp2 instead of
PExp3 in a variable declaration, but it can be quite difficult to find such an error.

To resolve this problem, the current version of SableCC requires a name for every al-
ternative, if a production has more than one. The name is added at the begining of the
alternative between braces. Additionally, SableCC requires a user specified name for every
element that appears more than once in a single alternative. The user specified name is
added in front of the element between brackets, followed by a colon. Here’s the modified
grammar:

Productions /* grammar */
exp = {constant} number | {add} add;
add = 1_par [left]:exp plus [right]:exp r_par;

When SableCC builds the set of AST classes, it does not give direct access to element
variables. Instead, it provides accessor methods. Accessors are getzzz and setzzz methods,
where the zzz is the name of the element. For our example grammar SableCC would
generate the following classes:

abstract class Node 1F
abstract class PExp extends Node{}
class AConstantExp extends PExp
{ TNumber getNumber(){...}
void setNumber (TNumber number){...}; }

class AAddExp extends PExp
{ PAdd getAdd({...}

void setAdd(PAdd add){...} }
etc.

SableCC adds code in these accessors to further prevent the contruction of an invalid AST.
For example, it enforces the “tree” property of the AST (e.g., a node cannot have more
than one parent). It also provides a parent() method to all AST nodes. The programmer
does not (and cannot!) set this reference. It is done automatically every time a setzzz
method is called.
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4: The visitor design pattern and SableCC

In order to build AST-walker classes that can be easily extended to add actions on
specific nodes of the AST, SableCC uses an adaptation of the visitor[3] design pattern. In
the following subsections, we revisit this design pattern, extend it, and then explain how it
is used by SableCC to achieve our design goals.

4.1: The visitor design pattern revisited

A somewhat formal definition of the visitor design pattern has been given as “a solution
to the problem of adding operations on the elements of an object structure without changing
the classes of the elements on which it operates”[3]. In our view, and according to our
experience in teaching it to novices in object-oriented programming, the name of this design
pattern is not very intuitive. So, in reaction to this, we have developed new names for the
constituents of this design pattern. We describe the design pattern as it is often used. We
say that it is an object-oriented way of implementing a switch on the type of an element.

Here is a small example. We have three classes Circle, Square and Rectangle, all
derived from class Shape. These classes are used in a program with a graphical user
interface that shows circles, squares and rectangles to the user. Every time the user points
an object with the mouse pointer and clicks on the mouse button, the method Selected is
called with the selected object as a parameter.

In the method Selected, we would like to print a diagnostic message saying “an z was
selected”, where 2 is either circle, square or rectangle, depending on the type of the selected
object. One way of doing this, in Java, would be to use the instanceof operator:

void Selected(Shape obj)
{ if(obj instanceof Circle)
System.out.println("a circle was selected");
else if(obj instanceof Square)
System.out.printin("a square was selected");
else
System.out.println("a rectangle was selected"); }

The problem with this approach, is that if we had 100 shapes, it could take up to 99
comparisons to find the shape of an object. Thus finding the shape of an object is O(n)
(worst case) where n is the number of available shape classes. We would like to do this
operation in O(1). One way of making this possible would be to define an abstract method
id in class Shape, and override it in each shape class to return a user defined unique ID.
Here’s the code:

abstract class Shape class Square extends Shape

{ ... s : .
. . N static final int ID = 2;
clzzth:;21:n;xi:£;é gha e int idQ) { return ID; } }
{ P class Rectangle extends Shape
o {...
static final int ID = 3;
int_id() { return ID; } }

static final int ID = 1;
int id() { return ID; } }
void Selected(Shape obj)
{ switch(obj.id())
{ case Circle.ID:
System.out.println("a circle was selected"); break;
case Square.ID:
System.out.println("a square was selected"); break;
case Rectangle.ID:
System.out.println("a rectangle was selected"); break; } }
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This approach has some problems. For example, it leaves the responsibility of keeping
the IDs unique in the hands of the programmer and it is easy to forget to write the break
statement. Additionally, the unique ID is redundant information. We can already identify
the type of an object using the instanceof operator.

Fortunately, there exists an object oriented way of doing this switch statement, without
defining a unique integer ID for each class. This method, uses inheritance and interfaces to
achieve its goal.

The first step in this solution is to define a Switch interface as follows: for each class
derived from Shape, we add a method called casezzz where zzz is the name of the class.

interfacé Switch
{ void caseCircle(Circle obj);
void caseSquare(Square obj);
void caseRectangle(Rectangle obj); }

This interface, will be implemented by every switch statement class used to tailor actions
based on the type of a shape object.

The second step is to modify each shape class to implement an apply method. The apply
method will call the appropriate method on a switch object passed in parameter.

abstract class Shape class Circle extends Shape
abstract void apply(Switch sw); } void apply(Switch sw)
etc. { sw.caseCircle(this); } }

Notice how the Circle.apply method calls the caseCircle method, passing a reference to
this in parameter. This means that when Circle.apply is called, the caseCircle method
of swis called with the circle in parameter.

Finally, we can use an anonymous Java class to implement the object-oriented switch on
the type of a shape. The following code demonstrates this:

void Selected(Shape obj)
{ obj.apply(new Switch()
{ void caseCircle(Circle obj)

{ System.out.println("a circle was selected"); }
void caseSquare(Square obj)
{ System.out.println("a square was selected"); }
void caseRectangle(Rectangle obj)
{ System.out.println("a rectangle was selected"); } }); }

This code is relatively similar to the previous implementation of the Selected method, but
this time, we used the apply method on obj, instead of the switch keyword.

This is normally called the visitor design pattern. In the usual presentation of the visitor
pattern, apply is called accept, and the caseXxx methods are called visitXxx. The
anonymous class (or any class implementing Switch) is called a visitor.

4.2: Extending the visitor design pattern

The visitor pattern, as described in the previous section has some limitations. As stated
in [3], the visitor pattern makes it hard to add new element types to the visited structure,
and visiting across class hierarchies is impossible. In SableCC generated frameworks, we
have made some modifications to the visitor design pattern to overcome these limitations
and render the design usable in the context of evolving structures. '

To do so, we redefine the Switch interface to be more generic.
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[Tinterface Switch { }

This interface will be the ancestor of all switch interfaces in the framework. Then, we define
a new Switchable interface:

[ interface Switchable { void apply(Switch sw); } ]

Every switchable class (like Circle, Square, and Rectangle) should implement this inter-
face. Here’s our modified code:

interface ShapeSwitch extends Switch
{ void caseCircle(Circle obj);

void caseSquare(Square obj);

void caseRectangle(Rectangle obj); }
abstract class Shape

implements Switchable {...}

class Circle extends Shape
{...
void apply(Switch sw)

{ ((ShapeSwitch)sw).caseCircle(this); } }
etc,

The introduction of the new Switch and Switchable interfaces allows us to add a new
Oval shape without modifying any existing class:

class (Oval extends Shape
interface ExtendedShapeSwitch {...

extends Switch void apply(Switch sw)
{ void caseOval(Oval obj); } { ((ExtendedShapeSwitch) sw).
casellval (this); } }

So, in shdlrt7 to add a new shape (or a collection of new shapes), we define a new interface
that extends Switch and includes a caseXxx method for each new shape. Then we make
sure that each new shape class implements the Switchable interface. We can now write:

interface AllShapesSwitch extends ShapeSwitch, ExtendedShapeSwitch {}
void Selected(shape obj)
{ obj.apply(new AllShapesSwitch()
{ void caseCircle(Circle obj)
{ System.out.println("a circle was selected"); }
void caseSquare(Square obj)
{ System.out.println{"a square was selected"); }
void caseRectangle(Rectangle obj)
{ System.out.printin("a rectangle was selected"); }
void caseOval(Oval obj)
{ System.out.println("an oval was selected"); } }); }

4.3: SableCC and visitors

In each generated framework, SableCC defines an Analysis interface that extends
Switch. This interface contains all the caseXxx methods for token classes (TXxx and
Token) and alternative classes (AXxx and Start). Naturally, class Node, the ancestor of all
AST classes, implements Switchable.

In addition, SableCC implements a utility class called AnalysisAdapter that implements
Analysis and provides a default implementation for all methods. Unless a method is
overridden, it will call the defaultCase method. This makes it possible to implement
a switch by extending AnalysisAdapter, specifying only relevant cases and catching all
unspecified cases in a default handler.

Here’s an example of the implementation of a switch adapter for our (extended) shape
example:
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class ExtendedShapeSwitchAdapter implements ExtendedShapeSwitch
{ void caseCircle(Circle obj) { defanltCase(obj); }

void caseSquare(Square obj) { defaultCase(obj); }

void caseRectangle(Rectangle obj) { defaultCase(obj); }

void caseOval(Oval obj) { defaultCase(obj); }

void defaultCase(Shape obj) { } }

We could use it to detect circles:

void Selected(Shape obj)
{ obj.apply(new ExtendedShapeSwitchAdapter()
{ void caseCircle(Circle obj)
{ System.out.println("a circle was selected"); }
void defaultCase(Shape obj)
{ System.out.println("The selected object is not a circle”); } }); }

4.4: AST walkers

One of the basic functionalities required to work on an AST is visiting its nodes. A
tree-walker class is a class that will visit all the nodes of an AST in a predefined order. By
default, SableCC provides two tree-walker classes. One that visits the nodes in a normal
depth-first traversal. The second visits the AST nodes in the reverse depth-first traversal.

To implement the tree walkers, SableCC uses the extended visitor design pattern pre-
sented in earlier sections.

Here is how SableCC implements tree walkers. It uses a set of recursive methods, like
this:

class DephtFirstAdapter extends AnalysisAdapter
{ void caseXxx(Xxx node)
{ node.getYyy.apply(this); // first child of Xxx
node.getZzz.apply(this); } // second child of Xxx
void caseAaa(Aaa node)
{ node.getBbb.apply(this); } // first child of Aaa
etc

For every alternative of every production of the compiled grammar, SableCC adds a caseXxx
method in the walker class. Each caseXxx method calls the apply method on every element
of the alternative.

To implement actions, a programmer defines a new class that extends one of the two
provided tree-walker classes. He then overrides the caseXxx method for all interesting
nodes.

5: A mini-BASIC interpreter

In this section, we demonstrate the simplicity of the SableCC framework by developing a
mini-BASIC interpreter. A complete version of this interpreter requires less than 250 lines
of documented Java code. In figure 3, we show the grammar specification of mini-BASIC.
It contains a package declaration, a list of helper regular expressions to simplify the writing
of more complex regular expression, a list of tokens with their definition, a list of tokens
that are ignored by the parser, and a list of productions that describe the grammar of the
language.

The language is a simple BASIC with integer variables. It contains a decision statement
in the form of an IF..THEN..ELSE ..ENDIF construct, and a loop statement in the form of
a FOR..TO..NEXT. Input and output are handled by the READ, PRINT and PRINTLN
statements. And finally, the language contains an assignment statement.
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In order to build an interpreter for this language, we follow the steps mentioned in section
2.1. So initially, we create a text file containing the grammar specification in of figure 3.

The next step is simply to launch SableCC on the specification file. At the shell prompt
we type:

$> java SableCC minibasic.grammar

o

The next step is to create working classes. In our case, we have a single class to create:
Interpreter.java. To simplify writing our interpreter, we create six methods to store and
retrieve values.

e int get/setVariable(String name) that gets and sets the integer value of variable name.
(Initially, all variables default to zero.)

e int get/setIntValue(Node node) that gets and sets the integer value associated with
a node.

 int get/setBoolValue(Node node) that gets and sets the boolean value associated with
a node.

We create the Interpreter.java class inheriting from the DepthFirstAdapter tree-
walker class, as shown in figure 3. Then, we override the appropriate method to add the
code to handle each kind of statement.

For example, to interpret an IF statement, we override the caseAIfStatement method.
An IF statement evaluation proceeds as follows:

1. Evaluate the Condition subtree
2. If condition is true evaluate the Statements subtree
3. Else evaluate the OptionalElse subtree.

Next, we implement the FOR loop interpretation. The process is again quite easy:

1. Evaluate the FromExp and the ToExp subtrees.
2. Execute a real Java loop from FromExp to ToExp.

3. In each iteration, Assign the appropriate value the loop variable. Then, evaluate the
Statements subtree.

We continue this way until we have covered all the statements in the grammar. Some
statement might require some special handling, like the READ statement that can cause a
1I/O ERROR.

The next step is to implement the interpretation of conditions and expressions. The
difference between expressions and statements is that an expression returns a value. More
specifically, evaluating an expression associates the result of the expression with the
Expression node. This is done using the setInt/BoolValue(Node, value).

For example, to evaluate a less_than condition, we override the
caseALessThanCondition method. Then we proceed with the evaluation as follows:

1. Evaluate the left and right subtrees.
2. setBoolValue(node, if getIntValue(left) < getIntValue(right) then true else false)
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Figure 3 shows how to interpret the most important or difficult conditions, expressions
and values. This is all what is needed in the Interpreter class.

The next step is to create a Main class with a main method to initiate the process. Here’s
a simjpliﬁed version:

public class Main
{ public static void main(String[] arguments)
{ try
{ Lexer lexer = new Lexer(...(File(arguments{0J)...);
Parser parser = new Parser(lexer);
Node ast = parser.parse(); // build the AST
ast.apply(new Interpreter()); // Call the interpreter
} catch(Exception e)
{ System.out.printin(e); } } }

We s%lwe this code in a file called Main. java. Then we are ready to build our interpreter
and test it:

$> javac Main. java

$> java Main file.bas

TYPE A NUMBER? 3

9/3 = 3

TYPE A NUMBER? 0
LDIVIDE BY ZERQ EBROR IN LINE & |

6: cher applications

Sai)leCC has been used in multiple projects. We list some of them here:

A project to build a Java 1.02 front-end compiler, handling Unicode characters and
escapes.

To realize this project, we simply took the Java grammar in [4] that was accepted
directly by SableCC (after adding names to alternatives). In order to handle all cases
in the lexer, we have buit two lexers with SableCC. We fed the output of the first to
the second.

e SableCC has been used to generate a newer version of itself.

The current version of SableCC has been buit using a previous version to generate
its framework. This allowed us to take advantage of all the improvements that were
incorporated in the framework to add new functinality.

o/ We have built a SIMPLE C compiler and implemented a state-of-the-art linear time
points-to analysis of programs[11].

This allowed us to assess the suitability of using SableCC to implement modern
compiler analyses. The code of the analysis is almost identical to the pseudo-code of
| the algorithm.

- Some McGill University undergraduate students used SableCC to build a compiler
i that generates Internet Common Gateway Interface (CGI) programs.

7: Related work

The most widely used compiler compilers today, fall into two main families: Lex/YACC
and PCCTS. We will discuss both tool families and look at their most popular Java imple-
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Package minibasic;

Helpers

cr = 13; 1f = 10;
letter = [’A7..727];

digit = [’0°..°9°];

not_cr_1f = [[32..127] - [er + 1£]];
Tokens

if = ’IF’; then = ’THEN’;
else = ’ELSE’; endif = 'ENDIF’;
for = ’FOR’; to = 'TO7;

next = ‘NEXT’; read = *READ’;
println = ’PRINTLN’; print = ’PRINT’;
assign = 7:=7; equal = '=?;
greater than = ’>*; less_than = ’<’;
plus = 7475 minus = -7,
mult = ’*7; div = */>;

1l par = °(’; r_par = 7)7%;
mod = ’*MOD’;

number = digit+;
string = "’ [not_cr_ 1f - >"’1x *"’;
identifier = letter (letter | digit)#*;
new_line = cr | 1f | cr 1f;
blank = ’> ’x*;
Ignored Tokens
blank;
Productions
statements =
{list} statement statements | {empty} ;
statement =
{if} if condition then [nl1]:new_line
statements optional_else
endif [nl12]:new_line |
{for} for identifier assign
[from_exp] :expression to
[to_exp] :expression {nli}:new_line
statements
next [nl2]:new_line |
{read} read identifier new_line |
{print_exp} print expression new_line |
{print_str} print string new_line |
{println} println new_line |

{assignment} identifier assign expression
new_line;

optional_else =

{else} else new_line statements | {empty} ;

condition =

{less_than} [left]:expression less_than
[right] iexpression |
{greater_than} [left]:expression greater_than
[right] :expression |
foqual} [left]:expression equal
[right] :expression;

expression =

{value} value |

{plus} [left]:value plus [right]:value |
{minus} [left]:value minus [right]:value |
{mult} [left]:value mult [right]:value |
{div} [left]:value div [rightl:value |
{mod} [left]:value mod [right]:value;
value =

{constant} number |

{identifier} identifier |

{expression} 1_par expression r_par;

public c¢Iass Interpreter extends DepthFirstAdapter]
{public void caseAIfStatement(//IF
AIfStatement node)
{node.getCondition().apply(this);//eval
if (getBoolValue(node.getCondition()))
node.getStatements() .apply(this);//eval
else node.getOptionalElse() .apply(this);}//eval
public void caseAForStatement(//FOR
AForStatement node)
{node.getFromExp().apply(this);//eval
node.getToExp() .apply(this);//eval
int from = getIntValue(node.getFromExp());
= getIntValue(node.getToExp());
for(int i = from; i <= to; it++)
{setVariable(node.getIdentifier().getText(),i);
node.getStatements() .apply(this);}}//eval
public void caseAReadStatement(//READ
AReadStatement node)
{System.out.print("? ");//display prompt
try
{String s = in.readLine();//read
int value = Integer.parselnt(s);//parse
setVariable(node.getIdentifier().getText(),
value);//set variable
}catch(IOException e)//I0 ERROR
{exrroxr("I/0 ERROR IN LINE "+
node.getRead() .getLine());
}catch(NumberFormatException e)//NUMBER ERROR
{erroxr("NUMBER FORMAT ERROR IN LINE "+
node.getRead() .getLine ());}}
public void caseAPrintExpStatement(//PRINT
APrintExpStatement node)
{node.getExpression().apply(this);//eval
out.print(getIntValue(node.getExpression()));}
public void caseAlessThanCondition(//left<right
ALessThanCondition node)
{node.getLeft().apply(this);//eval
node.getRight () .apply(this);//eval
setBoolValune(node,getIntValue (node.getleft())<
getIntValue(nude.getRight()));}
public void caseADivExpression(//left/right
ADivExpression node)

int to

{try
{node.getLeft() .apply(this);//eval
node.getRight () .apply(this);//eval
setIntValue(node,getIntValue(node.getLeft())/
getIntValue(node.getRight()));
}catch(ArithmeticException e)//DIVIDE BY ZERO
{error("DIVIDE BY ZERO ERROR IN LINE "+
node.getDiv().getLine());}}
public veoid caseAConstantValue (//Numbexr
AConstantValue node)
{try
{int value = Integer.parselnt(//parse
node . getNumber () .getText () ;
setIntValue(node,value);
}catch(NumberFormatException e) //NUMBER ERROR
{error("NUMBER FORMAT ERROR IN LINE "+
node.getNumber () .getLine());}}
public void caseAldentifierValue(//Identifier
AldentifierValue node)
{setIntValue(node,
getVariable(node.getIdentifier().getText()));}}

Figure 3. minibasic

.grammar and Interpreter.java




mentations.
These tools benefit from a large user base. Therefore, it can be relatively easy to find a
grammar for most languages to use with these tools, that has already been tested.

7.1: Lex/YACC

Lex[9] and YACC[T] (Yet Another Compiler Compiler) are a pair of tools that can be
used [together to generate a compiler or its front-end. Many variations on these tools are
in use today.

A version of Lex has been ported to Java. It is called JLex. It has been developed by
Elliot Joel Berk, a student of the Department of Computer Science, Princeton University.
It is quite similar in functionality to Flex.

A Java version of YACC is called CUP (Constructor of Useful Parsers). It has been

developed by Developed by Scott E. Hudson, Graphics Visualization and Usability Center,
Georgia Institute of Technology. It is very similar to YACC, but actions are written in the
Java |language.
The pair JLex/CUP is most suitable to build one pass compilers. This is achieved
by inserting actions at different points of the grammar specification. There is no special
suppprt for building abstract syntax trees. So writing an interpreter or a multiple pass
compiler can be a long and error prone process

7.2: PCCTS

PCCTS stands for Purdue Compiler Construction Tool Set. Tt has been developed mainly
by Terence Parr. Originally, PCCTS has been written in the C++ language to generate
coméilers written in C++. Lately, PCCTS 1.33 has been ported to Java and renamed
ANTLR2.xx[6].

A§‘very similar tool has been developed in parallel by Sun Microsystems inc., called
JavaCCl[5]. There are only small differences between these two products. JavaCC has a
better support for building abstract syntax trees (AST) than ANTLR.

These tools are used a technique to parse the input called LL(K) with semantic predicates.
Not junlike the LEX/YACC family of tools, the programmer is allowed to add actions into
the sj;peciﬁcation. In fact, the parsing power of semantic predicates cannot be obtained
without the use of actions.

JavaCC has options to automatically build an AST. There are two flavors of automatic
AST;S. In the first form, there is a single Node class. The type of a node is obtained
by q!uerying the Node.getType() method. Unlike SableCC, there are no specific types
for different alternatives of a production. Child nodes are accessed using a getNode(int
child number) method.

Inl the second flavor, the AST contains one class per production. Again, there are no
type$ for alternatives, and children are accessed by number.

H{ere are some consequences of these design decisions:

1., There is no general way of knowing the current alternative. For example, given a
Statement node, it is only by looking for specific child nodes (like getNode(l) =
'FOR’ or 'IF’), that we can find if we have a For or an If Statement. To minimize the
difficulty of this problem, the concept of tree parsers is introduced. But this does not
resolve the problem completely.
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2. The integrity and the correctness of the AST is left in the hands of the programmer.
There will be no warning if a transformation on the AST results in a degenerated
tree. Such bugs are extremely difficult to track. They may result in a null pointer
exception or some other error condition in unrelated code thousands of instructions
after the transformation has occurred. This is comparable to C and C++ array out
of bound problems.

3. Minor modifications to the grammar can cause problems that are hard to fix. This
happens when an additional element is added to an alternative. For example, if an
element is added to the beginning of an alternative, then all the code referring the
getNode(1) should be changed to getNode(2), but only for this specific alternative.
(And we have already seen that knowing the alternative is not always trivial).

Conclusion

Writing a small compiler or interpreter, or just writing a parser to read some formatted

text has become a common task. Compiler compilers are tools used by programmers to ac-
complish these tasks. As the Java language appeared on the internet and gained popularity,
existing compiler compilers have been ported to Java.

In this paper, we have introduced SableCC, a new compiler framework. We explained our

main design decisions in pursuit of building maintainable compilers in the Java language.
The framework automatically builds strictly typed abstract syntax trees and tree-walker
classes. We presented an extended version of the visitor design pattern which enables the
implementation of actions on the nodes of the abstract syntax tree.

R

SableCC is freely available to download at hitp://www.sable.mcgill. ca.

eferences

] ANSI. HL7 wversion 2.3 (ballot draft 3), 1997, World-Wide Web page URL:
http://www.mcis.duke.edu/standards/HL7/pubs/version2.3/.

1 J.W. Backus, R. J. Beeber, S. Best, R. Goldberg, L.M. Haibt, H.L. Herrick, R.A. Nelson, D. Sayre, P.B.
Sheridan, H. Stern, I Ziller, R. A. Hughes, and R. Nutt. The FORTRAN automatic coding system.
Western Joint Computer Conference, 1957.

] E. Gamma and R. Helm. Design Patterns, Elements of Reusable Object-Oriented Software. Addison-
Wesley, 1995.

] J. Gqsling, B. Joy, and G. Steele. The Java Language Specification. Addison-Wesley, 1996.

] Sun Microsystems Inc. JavaCC, 1997. World-Wide Web page URL: http://www.suntest.com/.
| Magelang Institute. ANTLR 2.0, 1997. World-Wide Web page URL: http://www.antlr.org/.
]

S. C. Johnson. YACC - yet another compiler compiler. Technical Report Computing Science Technical
Report 32, AT&T Bell Laboratories, Murray Hill, N.J., 1975.

] D. E. Knuth. The TeX book. Addison Wesley, 1984.

] M. E. Lesk. Lex - a lexical analyzer generator. Technical Report Computing Science Technical Report
39, AT&T Bell Laboratories, Murray Hill, N.J., 1975.

] T. LinDholm and F.Yellin. The Java Virtual Machine Specification. Addison-Wesley, 1997.

] Bjarne Steensgaard. Points-to analysis in almost linear time. In In Proceedings of the Twentythird
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 32-41,
1996.

] W3C. HTML 4.0 specification, 1997. World-Wide Web page URL: http://www.w3.org/TR/REC-
html40;.



